DIN 2445 Part-2 SEAMLESS STEEL TUBES FOR DYNAMIC LOADS SUPPLEMENT BASIS FOR CALUCULATION OF STRAIGHT TUBES

1. General information

During the operation of hydraulic installations, when the control valve is operated the pressure and velocity of the flow medium change. As the valve is switched on and off, the pressure changes with each working stroke for P A=0 to the maximum nominal pressure in each case. In addition, by reason of the changes in velocity, pressure surges arise which are superimposed on this pressure. The pipeline is dynamically stressed.

The calculation is carried out differently there for presses the working stroke of which is controlled by a valve or limited by a stop. The calculations with valve control, since it is only for these that generally valid assumptions arc possible.

	1	Ī			Tube	Wall	Tube	Deign	Weight
Tube	Wall	Tube	Deign	Weight	o. d.	thickness	i. d.	pressure's	
o. d.	thickness	i. d.	pressure's		mm	mm	mm	bar	kg/m
mm	mm	mm	bar	kg/m	20	1.58	17	212	0.684
4	0.5	3	313	0.043	20	2	16	282	0.888
4	0.75	2.5	409	0.063	20	2.5	15	353	1.079
4	1	2	522	0.074	20	3	14	373	1.258
5	0.75	3.5	376	0.083	20	3.5	13	426	1.424
5	1	3	432	0.099	20	4	12	478	1.578
6	0.75	4.5	333	0.103	22	1	20	128	0.518
6	1	4	389	0.123	22	1.5	19	192	0.758
6	1.5	3	549	0.166	22	2	18	256	0.986
6	2	2	692	0.197	22	2.5	17	320	1.202
6	2.25	1.5	757	0.208	22	3	16	385	1.406
8	1	6	333	0.173	25	2	21	226	1.134
8	1.5	5	431	0.240	25	2.5	20	282	1.387
8	2	4	549	0.296	25	3	19	338	1.628
8	2	4	549	0.296	25	4	17	394	2.072
8	2.5	3	658	0.339	25	4.5	16	432	2.275
						5	15	478	2.466

In the case of presses limited by a stop, the load must be recalculated after a dimension is chosen to allow for the water contained in the press cylinder.

www.TubeSolution.com

								-	
10	1	8	282	0.222	28	1.5	25	151	0.980
10	1.5	7	373	0.341	28	2	24	201	1.282
10	2	6	478	0.395	28	2.5	23	252	1.572
10	2.5	5	576	0.462	28	3	22	302	1.850
10	3	4	666	0.518	28	4	21	403	2.368
12	1	10	235	0.271	28	5	18	434	2.836
12	1.5	9	353	0.383	30	2	26	188	1.381
12	2	8	409	0.493	30	2.5	25	235	1.695
12	2.5	7	495	0.586	30	3	24	282	1.998
12	3	6	576	0.665	30	4	22	376	2.565
12	3.5	5	69	0.734	30	5	20	409	3.083
14	1	12	20	0.321	35	2	31	161	1.628
14	1.5	11	302	0.462	35	2.5	30	201	2.004
14	2	10	403	0.592	35	3	29	242	2.367
14	2.5	9	434	0.709	35	4	27	322	3.058
14	3	8	507	0.814	35	5	25	403	3.699
14	3.5	7	576	0.906	35	6	23	419	4.291
14	4	6	64	0.986	38	2.5	33	186	2.189
15	1	13	188	0.345	38	3	32	223	2.589
15	1.5	12	282	0.499	38	4	30	297	3.354
15	2	11	376	0.641	38	5	28	371	4.069
15	2.5	10	409	0.771	38	6	26	390	4.735
15	3	9	478	0.888	38	7	24	446	5.352
16	1	14	176	0.370	42	2	38	134	1.973
16	1.5	13	264	0.536	42	3	36	201	2.885
16	2	12	353	0.691	42	4	34	269	3.749
16	2.5	11	386	0.832	50	6	38	338	6.511
16	3	10	452	0.962	50	9	32	437	9.103
18	1	16	157	0.419	65	8	49	347	11.246

18	1.5	15	236	0.610	80	10	60	353	17.263
18	2	14	313	0.789					
18	2.5	13	392	0.956					
18	3	12	409	1.110					

2. Design pressures

The pumps and accumulators of a hydraulic installation are designed for a pressure, the nominal pressure, as specified in DIN 2401 Part 1. This is the design pressure of the installation pA. It is possible to calculate a pressure surge which brings about an increase in pressure. This calculated pressure $p = pA + \triangle p$ is the maximum pressure in the installation.

The calculation of the continuous pulsating fatigue strength of the tubes was hased on the maximum pressure p.

When there are unusually long supply lines, the greater pressure surge fluctuates around the pressure permanently present in the installation. The fatigue strength of such tubes can be calculated from the amplitude of fluctuation $p - p = 2 \triangle p$.

Correlation of the pressures

All pressures are overpressures in bar

	Alternation of pressure or	n which the	Maximum applicable pressure		
Nominal	calculation is based		(calculated pressure for)	Nominal pressure of pipeline	
pressure of the	For water hydraulic	For oil hydraulic			components
installation	installations with	installations with	hot finished tubes according to	precision steel tubes according	(e.g. flanges,
(design	I = 30 m	l = 7 m	DIN 2445 Part 1	to DIN 2445 Part 2	fitted
pressure)	w = 10 m/s	w = 9 m/s	for water hydraulic installations	for oil hydraulic installations	appliances
	Ts = 0.1 s	Ts = 0.025 s			
pА	± p		р	PN	
64	-	45	-	-	125
100	60	45	160	145	160
160	60	45	220	205	250
250	60	45	310	295	320
320	60	45	380	365	400
400	60	45	460	445	500

3. Types of fluctuating stress

Various types of change in pressure arise in a hydraulic installation during operation. Pressure changes from 0to p occur in the control line, depending on the number of working strokes. A pressure change equal to the pressure surge around the installation pressure pA $\pm \triangle$ p also occurs as a multiple of the number of working strokes. It is mostly not possible to give more precise information as to the nature of the actual collectives stresses. The overall rise in pressure from 0 to p should therefore be taken into account in calculating pulsating fatigue strength.

4. Calculation assumptions

Sections 4.1 and 4.2 list calculation assumptions which are valid for most cases in practice. The values can be varied, although \triangle p cannot be made lager than the pressure change on which the calculation is based as shown in the Table.

4.1 Hot finished tubes for hydraulic installations according to DIN 2445 Part

Length of pipeline	l = 30 m
Rate of flow	w = 10m/s
Closing time of control element	Ts = 0.1 s
Number of working strokes	n > 2 · 10
Pressure propagation velocity	α = 1300 m/s
Density of water	$\Omega = 1000 \text{ kg/m}^3$
Surge effect factor	Z = 2 • 1 / a • T5 = 2 • 30 / 1300 • 0.1 = 0,45
Pressure increase from pressure surge	$\triangle p = Z(\Omega \cdot \alpha \cdot w / 10) = 0.45 \cdot (1000 \cdot 1300 \cdot 10 / 10)$

4.2 Precision steel tubes for oil hydraulic installations according to DIN 2445 Part 2

Length of pipeline	l = 7 m
Rate of flow	w = 9 m/s
Closing time of control element	Ta = 0,025 s
Number of working strokes	n > 2 · 10
Pressure propagation velocity	α = 1300 m/s
Density of water	$\Omega = 880 \text{ kg/m}^3$
Surge effect factor	Z = 2 • I / a • T5 = 2 • 7 / 1300 • 0,025 = 0,43
Pressure increase from pressure surge	$\Delta p = Z(\Omega \cdot \alpha \cdot w / 10) = 0.43 \cdot (880 \cdot 1300 \cdot 9)/10 = 4.45 \text{ N/mm}^2 \sim 45 \text{ bar}$

5.Calculation

The tubes should be calculated in accordance with DIN 2431, June 1972 edition, scope III for deformation and for fatigue failure over a given number of cycles or overall. The larger of the resulting tube wall thickness should be chosen.

5.1 Calculation for deformation

s= da \cdot p / 2 \cdot Ozul + c1 P = Pa + \triangle P Ozul = K / S = y \cdot K

Materials: St 35,4 and St 52.4

Yield strength in N/mm²

Range of application	Grade of steel	da \leqslant 30 mm $$ wall thickness		da>30mm wall thickness			
	Giade of Steel	≤3	>3	≤16	>16 ≤30	>30 ≤50	>50
Part	St 35.4	225	235	235	-	-	-
Part	St 52.4	-	355	355	345	335	315